If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x=4x^2-40x
We move all terms to the left:
40x-(4x^2-40x)=0
We get rid of parentheses
-4x^2+40x+40x=0
We add all the numbers together, and all the variables
-4x^2+80x=0
a = -4; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·(-4)·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*-4}=\frac{-160}{-8} =+20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*-4}=\frac{0}{-8} =0 $
| X+45=2x+20 | | -x-11x=-36 | | 68=1/2x(10+7) | | -21=-3-2n | | 3z+6z=-29 | | 3.4(x+8)=1/3(x+27) | | 6k=19.152 | | 2w+(2w+1401/2)=41/4 | | m3-4=1 | | 4g−g=15 | | (3x+18)+(5x+10)=180 | | -173=2x+3(6x+9) | | 8x+4=9x-15 | | -8.1=11.1+u/6 | | −65 x=−310 | | 2(x+4=2(x-4+4x | | 7(x−3)=7x−21 | | 7x−3=7x−3 | | 3/4x+A=42 | | v+7=-2 | | 0.2x+1.6=0.8x-0.2 | | 6x+14=3(2x+50 | | 3y-4=4y+3-2y | | 10(x-9)+20=72 | | 23=-8x+1 | | 12x+6=3(2x+1)+6x+3 | | (6x-26)+4=180 | | -4+x/12=-11 | | 9x+13=-9x+-19 | | (6x-26)=4 | | 4(x)44=100 | | -4(3t-2)+9t=7t-9 |